

Comorbidity identification in clinical documents with weak supervision.

Sylvain Brouwer Maurice van Keulen Jeroen Geerdink Johannes H. Hegeman

/// Comorbidity: Definition

Presence of additional chronic diseases concurrently with an index disease in one individual.^[1]

[1] Valderas et al. (2009) Defining Comorbidity: Implications for Understanding Health and Health Services

Current Situation

// Motivation

Clinical Practice

- Clinicians would like a comprehensive overview of patient comorbidity.
- Comorbidities are buried in texts, not available immediately.

B

Research

- Comorbidities are important inputs for research and predictive models.
- Manual extraction of comorbidities from the EHR is a time-consuming task for large patient cohorts.

// Motivation

Clinical Practice

- Clinicians would like a comprehensive overview of patient comorbidity.
- Comorbidities are buried in texts, not available immediately.

B

Research

- Comorbidities are important inputs for research and predictive models.
- Manual extraction of comorbidities from the EHR is a time-consuming task for large patient cohorts.

// Research Question 1

Methodology

// How do we frame our problem?

complaint:

potential collum fracture r after fall

anamnesis:

heteroanamnesis due to dementia. patient fell out of bed this morning, was no longer able to mobilize afterwards.

medical history: hypertension, osteoporosis, dvt 2010 – claudicatio intermittens 2002 – knee fracture

lab: ...

conclusion/therapy: ...

How do we define identification / extraction?

What medical conditions are relevant?

/// How do we frame our problem?

/// Relevant Conditions: Charlson Index

Weight	Condition	
1	Peripheral vascular disease	
	Dementia	
	Myocardial infarction	e.
	Chronic pulmonary disease	Irat
	Mild liver disease	ival
	Congestive heart failure	nus
	Peptic ulcer disease	ear
	Cerebrovascular disease	0-ye
	Diabetes, without chronic complications	ed 1
	Rheumatic disease	nate
2	Hemiplegia	stin
	Renal disease	ш
	Malignancy, except skin neoplasms	
	Diabetes, with chronic complications	
3	Moderate/severe liver disease	
6	Metastatic solid tumor	
	AIDS/HIV	

FIGURE 3.1: Estimated 10-year survival rate for CCI scores.

/// Classify at a document level

complaint: potential collum fracture r after fall

anamnesis:

heteroanamnesis due to **dementia**. patient fell out of bed this morning, was no longer able to mobilize afterwards.

medical history: hypertension, osteoporosis, **dvt** 2010 – **claudicatio intermittens** 2002 – knee fracture

lab: ...

conclusion/therapy: ...

Peripheral vascular disease

/// Dataset

TABLE 5.3: Occurrence rates of CCI categories in DATA-HIP

Category	Occurrence rate
Cerebrovascular disease	0.188
Dementia	0.170
Congestive heart failure	0.153
Diabetes, without chronic complications	0.147
Malignancy, except skin neoplasms	0.146
Chronic pulmonary disease	0.136
Peripheral vascular disease	0.121
Renal disease	0.089
Rheumatic disease	0.086
Myocardial infarction	0.078
Diabetes, with chronic complications	0.047
Hemiplegia / paraplegia	0.024
Metastatic solid tumor	0.020
Peptic ulcer disease	0.020
Mild liver disease	0.009
Moderate / severe liver disease	0.003
AIDS / HIV	0.000

/// Dataset: Class Imbalance

TABLE 5.3: Occurrence rates of CCI categories in DATA-HIP

Category	Occurrence rate
Cerebrovascular disease	0.188
Dementia	0.170
Congestive heart failure	0.153
Diabetes, without chronic complications	0.147
Malignancy, except skin neoplasms	0.146
Chronic pulmonary disease	0.136
Peripheral vascular disease	0.121
Renal disease	0.089
Rheumatic disease	0.086
Myocardial infarction	0.078
Diabetes, with chronic complications	0.047
Hemiplegia / paraplegia	0.024
Metastatic solid tumor	0.020
Peptic ulcer disease	0.020
Mild liver disease	0.009
Moderate / severe liver disease	0.003
AIDS / HIV	0.000

/// Dataset: Phase 2

<section-header><section-header>

All documents:

Emergency department notes

Fractures due to trauma

age ≥ 70

Hip Fractures
n=3290
Hand
annotated
Urber Fractures
n=20897
Weakly
annotated

TABLE 5.3: Occurrence rates of CCI categories in DATA-HIP

Category	Occurrence rate	
Cerebrovascular disease	0.188	
Dementia	0.170	
Congestive heart failure	0.153	
Diabetes, without chronic complications	0.147	
Malignancy, except skin neoplasms	0.146	
Chronic pulmonary disease	0.136	
Peripheral vascular disease	0.121	
Renal disease	0.089	
Rheumatic disease	0.086	
Myocardial infarction	0.078	
Diabetes, with chronic complications	0.047	
Hemiplegia / paraplegia	0.024	
Metastatic solid tumor	0.020	
Peptic ulcer disease	0.020	
Mild liver disease	0.009	
Moderate / severe liver disease	0.003	
AIDS / HIV	0.000	

/// K-fold Validation (K=10)

• Individual groups of diagnoses:

 $f_1 = 2 \frac{Precision * Recall}{Precision + Recall}$

 Entire document: accuracy (%documents with correct labels)

Phase 1: Full Supervision

/// Full supervision

- Straightforward, baseline approach.
- 4 Considered models:
 - Naïve Bayes
 - Gradient Boosted Trees
 - Random Forest
 - Transformers (BERT / RoBERTa)

 $P(C|D) = \frac{P(D|C)P(C)}{P(D)} \propto P(D|C)P(C)$

// Full supervision (1 fold)

Phase 2: Weak Supervision

// How can we generate enough examples of rare conditions?

- Literature links the Charlson Index to SNOMED CT^[1]
- Can we look for the terms of relevant SNOMED concepts in our documents?

UNIVERSITY

OF TWENTE.

21

// Research Question 2

/// Weak Supervision: General Approach

- 1. Aggregate terminologies onto SNOMED CT
- 2. Retrieve relevant terms for CCI categories from SNOMED
- 3. Check for occurrences of terms from retrieved list in unlabeled documents

/// Weak Supervision Pipeline

// Problem 1: Mismatch in language

• Clinicians often use terms or phases that can not be found in medical terminologies like SNOMED CT.

"hemibeeld" instead of "hemiplegie" / "hemiparese"

"diabetes met voetafwijking" instead of "diabetische voet"

Our solution:

Pseudo-labeling:

- 1. Train a supervised classifier based on hand-annotated data.
- 2. Have supervised classifier predict labels for unannotated data.
- 3. Augment keyword-based weak labels with predicted (pseudo-) labels.

// Weak Supervision + Pseudo-labeling

// Problem 2: Abbreviations

// Full Training Pipeline

- Improvements in f1 score:
 0.05-0.35 for <5% categories.
- Best classification accuracy: Random Forest - 75%
- **92%** of documents were within 1 CCI point

/// Takeaways

- Random Forests + Weak supervision performed best.
 - Classification accuracy of **75%**.
 - Within 1 point of the correct CCI score in 92% of test cases. (89% w/o weak supervision)
- Weak supervision with terminologies is effective at generating samples at low cost but care should be taken to bridge the language gap between terminologies and practice.

(71% w/o weak supervision)

- Small amount of hand-labeled data.
- Pseudo labeling.
- Maintain list of nonstandard vocabulary.
- Disambiguation of abbreviations.

/// Applicability

Clinical Practice

- The achieved accuracy (75% + 92% within 1 point) is insufficient for completing structured "problem lists" in the EHR.
- May be used to present some aggregated metric of comorbidity (e.g. CCI score).

Research

- The achieved accuracy (75% + 92% within 1 point) may be sufficient for feature extraction and annotation in future research.
- This is especially the case for research regarding elderly patients.
- ZGT is currently continuing work regarding postoperative mortality prediction.

Attributions

Template:

• Hospital Group Twente (ZGT)

Images:

- <u>https://www.istockphoto.com/nl</u>
- <u>https://www.chipsoft.com</u>

Icons:

- Vitaly Gorbachev @ <u>https://www.flaticon.com/authors/vitaly-gorbachev</u>
- <u>https://www.freepik.com/</u>
- <u>https://www.cleanpng.com/</u>

// Weak labeling pipeline

// Weak labeling pipeline

