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/// Comorbidity: Definition

Presence of additional chronic diseases concurrently with an index 
disease in one individual.[1]

[1] Valderas et al. (2009) Defining Comorbidity: Implications for Understanding Health and Health Services
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/// Current Situation

• Electronic Health Record: HiX

• 80% of data is unstructured
• Images
• Documents

• 20% of data is structured
• Lab measurements
• Medication lists
• List of diagnoses
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/// Motivation

Clinical Practice

• Clinicians would like a comprehensive overview of 
patient comorbidity.

• Comorbidities are buried in texts, not available 
immediately.

Research

• Comorbidities are important inputs for research 
and predictive models.

• Manual extraction of comorbidities from the EHR is 
a time-consuming task for large patient cohorts.
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/// Motivation

Clinical Practice

• Clinicians would like a comprehensive overview of 
patient comorbidity.

• Comorbidities are buried in texts, not available 
immediately.

• Complete the overview.

Research

• Comorbidities are important inputs for research 
and predictive models.

• Manual extraction of comorbidities from the EHR is 
a time-consuming task for large patient cohorts.

• Replace manual annotation.

Clinical 
Documents

Machine 
Learning
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/// Research Question 1

Q1: How can we design a machine learning approach or artifact for 
obtaining relevant comorbidities from clinical notes?
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Methodology
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/// How do we frame our problem?

complaint:
potential collum fracture r after fall

anamnesis:
heteroanamnesis due to dementia. 
patient fell out of bed this morning, was 
no longer able to mobilize afterwards.

medical history:
hypertension, osteoporosis, dvt
2010 – claudicatio intermittens
2002 – knee fracture 

lab: …

conclusion/therapy: …

How do we define identification / extraction?

What medical conditions are relevant?
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/// How do we frame our problem?

complaint:
potential collum fracture r after fall

anamnesis:
heteroanamnesis due to dementia. 
patient fell out of bed this morning, was 
no longer able to mobilize afterwards.

medical history:
hypertension, osteoporosis, dvt
2010 – claudicatio intermittens
2002 – knee fracture 

lab: …

conclusion/therapy: …

…
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/// Relevant Conditions: Charlson Index
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/// Classify at a document level

complaint:
potential collum fracture r after fall

anamnesis:
heteroanamnesis due to dementia. 
patient fell out of bed this morning, was 
no longer able to mobilize afterwards.

medical history:
hypertension, osteoporosis, dvt
2010 – claudicatio intermittens
2002 – knee fracture 

lab: …

conclusion/therapy: …

Peripheral vascular disease

Dementia
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/// Dataset

All documents:
Emergency department notes

Fractures due to trauma
age ≥ 70

Hip Fractures
n=3290

Hand
annotated
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/// Dataset: Class Imbalance

All documents:
Emergency department notes

Fractures due to trauma
age ≥ 70

Hip Fractures
n=3290

Hand 
annotated
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/// Dataset: Phase 2

All documents:
Emergency department notes

Fractures due to trauma
age ≥ 70

Hip Fractures
n=3290

Hand 
annotated

Other Fractures
n=20897

Weakly 
annotated
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/// K-fold Validation (K=10)

• Individual groups of diagnoses:

• Entire document: accuracy              
(%documents with correct labels)

Hip Fractures
n=3290

Hand 
annotated
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Phase 1: Full Supervision
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/// Full supervision

• Straightforward, baseline approach.

• 4 Considered models:
• Naïve Bayes
• Gradient Boosted Trees
• Random Forest
• Transformers ( BERT / RoBERTa )
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/// Full supervision (1 fold)
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• > 5% occurrence rate: 

• < 5% occurrence rate: 

• Best classification accuracy: 
Random Forest - 71%
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Phase 2: Weak Supervision
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/// How can we generate enough 
examples of rare conditions? 
• Literature links the Charlson Index to SNOMED CT[1]

• Can we look for the terms of relevant SNOMED 
concepts in our documents?

[1] Stephen Fortin, Jenna Reps, and Patrick Ryan. “Adaptation and validation of a coding algorithm for the Charlson Comorbidity Index in administrative 
claims data using the SNOMED CT standardized vocabulary”
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/// Research Question 2

Q2: How can we leverage existing medical terminologies and 
ontologies in labeling sufficient training data?



23

/// Weak Supervision: General Approach

1. Aggregate terminologies onto SNOMED CT

2. Retrieve relevant terms for CCI categories from 
SNOMED

3. Check for occurrences of terms from retrieved list 
in unlabeled documents

Per-class terminology list
Other Fractures

n=20897

Weakly 
annotated

 Term 1 in document?
 Term 2 in document?
 …
 …
 ...
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/// Weak Supervision Pipeline
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/// Problem 1: Mismatch in language

• Clinicians often use terms or phases that can not be found in medical terminologies like SNOMED CT.

“hemibeeld” instead of “hemiplegie” / “hemiparese”

“diabetes met voetafwijking” instead of “diabetische voet”

Our solution: 
Pseudo-labeling:
1. Train a supervised classifier based on hand-annotated data.
2. Have supervised classifier predict labels for unannotated data.
3. Augment keyword-based weak labels with  predicted (pseudo-) labels.
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/// Weak Supervision + Pseudo-labeling 
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/// Problem 2: Abbreviations

Peripheral vascular disease- bladder cancer

- angioplasty

pta

Peripheral vascular disease

Myocardial Infarction- mitral valve 
insufficiency

- myocardial infarction

mi

Myocardial Infarction
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/// Full Training Pipeline
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• Improvements in f1 score: 
0.05-0.35 for <5% categories.

• Best classification accuracy: 
Random Forest - 75%

• 92% of documents were 
within 1 CCI point
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/// Takeaways

• Random Forests + Weak supervision performed best.
• Classification accuracy of 75%. (71% w/o weak supervision)
• Within 1 point of the correct CCI score in 92% of test cases. (89% w/o weak supervision)

• Weak supervision with terminologies is effective at generating samples at low cost but care should be taken 
to bridge the language gap between terminologies and practice.

• Small amount of hand-labeled data.
• Pseudo labeling.
• Maintain list of nonstandard vocabulary.
• Disambiguation of abbreviations.
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/// Applicability

Clinical Practice

• The achieved accuracy (75%  + 92% within 1 point) 
is insufficient for completing structured “problem 
lists” in the EHR.

• May be used to present some aggregated metric of 
comorbidity (e.g. CCI score).

Research

• The achieved accuracy (75%  + 92% within 1 point) 
may be sufficient for feature extraction and 
annotation in future research.

• This is especially the case for research regarding 
elderly patients.

• ZGT is currently continuing work regarding 
postoperative mortality prediction.
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zgt.nl 

MET OPRECHTE AANDACHTVERBINDENDVOORUITSTREVEND

Thank You!

sylvainbrouwer@gmail.com

https://github.com/SylvainBrouwer/

mailto:sylvainbrouwer@gmail.com
https://github.com/SylvainBrouwer/
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/// Weak labeling pipeline
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/// Weak labeling pipeline
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